Activity

Wind spinner free experimentation

Summary
Use common materials to design and construct a device that turns in the wind. Relate to an anemometer (which measures wind speed) or wind turbines/windmills.
Science content
Physics: Motion and Forces, Newton’s Laws, Gravity (K, 2, 6)
Physics: Energy forms, Conservation of Energy (1, 3, 4, 5)
Earth/Space: Weather, Seasons, Climate Change (K, 1, 4, 7)
Earth/Space: Sustainable practices, Interconnectedness (2, 5, 7)
Science competencies (+ questioning + manipulation + others that are in every activity)
Questioning/predicting: predicting (1 up), hypothesizing (7)
Planning/conducting: planning investigations (3 up)
Processing/analyzing: comparing observations with predictions (1 up)
Processing/analyzing: considering alternative explanations (5 up)
Evaluating: inferring (3 up)
Evaluating: identifying environmental implications (1 up)
Materials
  • scissors
  • masking tape
  • cardboard e.g. cereal boxes
  • skewers
  • popsicle sticks or coffee stir sticks
  • straws
  • little tubes or pen caps
  • optional: push pins
  • optional: other blunt pins (mine came out of a broken pin screen)
  • optional: modelling clay (recommended after the pivot has been built)
Procedure

Show students the materials.
Give them their challenge:
Make a device that turns in the wind.
They can test their device by blowing on it, or ideally, by taking it into/making it in the wind outside.

For older students, allow them to work a while, then state the key design components:
(to help students that are still to start on a design, and to conceptually frame designs already in progress)
A 'pivot': parts that can spin around each other.
'Blades' that can catch the wind: larger surface areas that the wind can hit and push against.
It might be useful to refer back to these if students get stuck in their designing.

For some student groups this activity may be best split up into two parts. First all students make a pivot, then share each others’ designs. Then students choose any of the pivot styles displayed, make their own pivot and design blades to attach to their pivot.

Show younger or less mechanically-minded students different ideas for making a pivot (there are many other ways):
1. a skewer in an inverted tube/pen cap (to which the blades can be attached)
2. a skewer through a straw (to which the blades can be attached)
3. a blunt pin through an enlarged hole in a straw
There are other ways to make a pivot, but these are simple ones I have seen so far.

For Kindergarten students, provide them with tube-and-skewer pivot, cardboard, scissors and tape. Demonstrate how the tube spins on the skewer. Draw and name shapes that they could cut out of cardboard ("rectangle", "triangle", "blade shape" good to include), to tape to the tube. They can add more shapes if they want. Depending on how they tape the blades onto the tube, and so how floppy the blades are, they may need to be shown how to strap a strip of curved cardboard across two blades to hold them steady.

Allow students time to freely experiment, discuss ideas together (and share good ideas with each other, as all good designers and architects do).
The Play-Debrief-Replay method for teaching works well for this activity - see notes in the resource.

If students are in need of help, either ask them to visit other wind machines that are spinning in the classroom, or help them focus on some ideas (e.g. see pivot ideas above).

Once they are done experimenting, review the different ways of making the key machine elements (pivot; blades to catch the wind)

During discussion, refer to uses of machines that turn in the wind:
Anemometers measure wind speed - cups that spin around a shaft. Using magnets, the number of turns is translated into wind speed. (Show real anemometer if possible.)
(Wind vanes have a blade that turns in the wind, but its position stablilizes to show the direction that the wind is coming from.)
Wind pumps are wind machines that can be used to pump water for farming or for groundwater extraction. Photo of a wind pump: https://en.wikipedia.org/wiki/Windpump#/media/File:Wind-powered-agricul… Video showing wind pump mechanisms of gears and pump: https://www.youtube.com/watch?v=BugXmDxC0WM
Windmills were commonly used for grinding grain. They are complex machines of levers, wheels and gears. Windmills in the Netherlands: https://en.wikipedia.org/wiki/Windmill#/media/File:KinderdijkWindmills… Windmill diagram showing gears transmitting wind energy to millstones: https://tringlocalhistory.org.uk/Windmills/images/03/Schematic%202.jpg
Wind turbines are used to generate electricity: the energy in wind turns a blade which runs a generator to make electricity. Wind turbines are in greater use with increasing sustainable energy practices. Wind turbine diagram of parts: https://upload.wikimedia.org/wikipedia/commons/thumb/6/6c/Wind_turbine_…

Notes

I started out also providing little paper cups in the materials, but found that students did not use them as the part that catches the wind, but often as a rickety pivot. Removing the cups redirected students towards better pivot ideas, and if they wanted a cup-like blade, they could curve the cardboard or paper.
I started out providing clay, but students often stuffed the little tube with it to try and make an (ineffective) pivot. Now I only provide it after pivots are made and if asked for, or if deemed useful for making a stand or for cementing parts together.

Grades taught
Gr K
Gr 1
Gr 2
Gr 3
Gr 4
Gr 5
Gr 6
Gr 7