You are here

Activity

Flower colours

Summary: 
Mash a flower petal and change its colour to investigate how flowers make their different colours.
Science content (2016 curriculum): 
Biology: Features, Adaptations of Living Things (K, 1, 3, 7)
Chemistry: Atoms, Molecules (3-7)
Chemistry: Chemical Changes (2, 7)
image
Materials: 
  • dark red rose. Many other dark pink/purple/red flowers also work e.g. dark red camellia, rhododendrons, red poppies. Bluebells work for adding acid, but make goopy petal juice
  • teaspoon measure
  • water
  • mortar and pestle
  • dropper
  • tray with wells, white is best e.g. small paint tray (as pictured) or ice cube tray
  • vinegar in dropper bottle (or empty water bottle with a pin hole in the lid), labelled "acid"
  • baking soda (about 1 teaspoon) in water (about 1 cup) in dropper bottle, labelled "base"
  • optional: molecule models of acid and basic versions of cyanidin, or an image
Procedure: 

Pick a petal from the flower (use one rose petal, one camellia petal, 4 bluebell flowers, or equivalent).
Tear the petal into small pieces and put them in the mortar.
Add one teaspoon of water. Grind the petal and water together with the pestle: push down while grinding in a circle. Keep grinding until the water is as dark as the petal. It’s important that you get the water really dark.
Suck up the petal juice with a dropper. Put a few drops of petal juice in each well of the tray. Add a drop or two of acid (vinegar) to one well of the petal juice in the tray. Add a drop or two of base (baking soda solution) to another well. What new colours do you see? Are any of them familiar flower colours?
(acid makes the petal juice pink/orange; base makes it purple/blue (and green with some flowers).
Experiment with adding various amounts of acid and base to the petal juice.
Can you reverse the colour changes?

Ask students to record the changes they find. In class discussion, distill out the most frequent colour changes made in acid and in base (blue and purples in base and oranges and pinks in acid). Some colours will not change (generally yellows, oranges).

Just like you can make different colours by adding acid or base, some flowers are red, purple or blue depending on the levels of acid or base in their petals. They contain colour molecules (pigments) called anthocyanins that change structure slightly depending on the amount of acid or base they are in - one structure is red and the other is blue. Depending on the mix of red and blue anthocyanin molecules, the colour can vary between pink/red/purple/blue (all the colours you saw in the activity), giving rise to a great variety of flower colours from one kind of pigment molecule.
Different colour flowers attract different pollinators.

Optional - show students molecule models of red and blue anthocyanin molecules (I used the cyanidin molecule, which is the red pigment in dark red roses), and challenge them to find the difference between them. (Clue: look at the white hydrogen atoms.) One particular hydrogen atom on the cyanidin molecule is present in the acidic version of the molecule (which is red) and missing in the basic version (which is blue). Depending on the amount of acid or base, there is a different ratio of red and blue cyanidin molecules, which gives rise to the range of red-purple-blue colours.

You may have also made green petal juice. This is because another pigment molecule changes from white to yellow with more base. When the yellow mixes with the blue anthocyanin, green results.
Not all flower pigment molecules change with the amount of acid or base e.g. the yellow of tulips and other flowers. Pigment molecules mix and match together to make all the different flower colors that we see.

Students freely experimenting may also notice that bubbles sometimes form. If acid and base are added to the same well of the tray they chemically react to make CO2 gas (see baking soda chemistry).

Notes: 

With McBride students at Van Dusen, I just did acid addition to bluebell petal juice, then they looked around for flowers with this new pink colour.

Try purple crocuses.
Berry colours that are purple, blue and red might also be due to anthocyanin that are pH-sensitive (try cherries; blueberries do not change colour on a quick test).

See map of rhododendrons and other flowers in bloom on the way to Tatlow in ingridscience folder.

Grades taught: 
Gr K
Gr 1
Gr 2
Gr 3
Gr 4
Gr 5
Gr 6
Gr 7
Teacher: 
Christy Wong
Ingrid
Kecia Boecking
Nitsa Panago
Self guided
Sonia Ko
Sonja Watson
Tammy Wreggit
Teaching site: 
General Gordon Elementary Science Club
ingridscience afterschool
JEMZ+ After school science
McBride Elementary
Laurier Elementary
New York Hall of Science
Oppenheimer Elementary
After School Program at Elementary schools in New York City
Van Dusen Botanical Garden
Activity originally developed and delivered: 

New York Hall of Science Biochemistry Lab.