Flying Things
Do a selection of the activities.
Tie together with discussions on force and what makes them fly.
Do a selection of the activities.
Tie together with discussions on force and what makes them fly.
As described on the Exploratorium website (www.exploratorium.edu/science_explorer/hoopster.html):
Cut the card into strips, about 1 X 5inches long.
Tape one piece into a loop, and another two into a larger loop (by taping them end to end first).
Tape the loops onto each end of a straw, lined up with each other.
Throw the hoopster like a spear. It will rotate and fly quite well.
Play around with variations on the basic hoopster, and compare how they fly (make sure to have several trials with each):
change the number of loops
change the orientation of the loops
change the length of the hoopster by adding straws (push one end into another)
add weight with paper clips or modelling clay
etc. etc
Discussions of the forces involved:
The forward motion is called thrust and is generated by our arm pushing it forward.
The air moving around the loops gives it lift so that it can fly for a while.
Air resistance eventually slows it down and gravity brings it to the ground.
Free experimentation in small tubes:
Instruct students to half fill a small tube with room temperature water. Then drop in one or more of the water types (salty/cold/warm). Watch whether the drips sink or float. Use coloured pencils to show observations. Then try adding different combinations of water to see where they settle.
In general, salty water will settle lowest, then cold water, then warm water will stay on the top (note that after adding salty water, the salt mixes in and will make the whole tube salty, so that cold water will stay near the surface, sometimes even above a red layer (that is warm but now has some salt mixed in). Students will get their own unique results depending on what order and how much of each water type they add. They should be encouraged to look closely and observe water flowing in the tube when they add each type.
Modelling world-wide ocean currents
The heating of the surface of the ocean, and freshwater flow into the ocean changes the temperature and salinity of the ocean. Warmer water is less dense than cooler water, and saltier water is more dense than less salty water. Denser water sinks below less dense water, so the differences in temperature and salinity causes water to move, driving ocean currents.
The thermohaline circulation of ocean water (called the ocean conveyer belt) flows around the world. Warm water from the Tropics is driven North by wind. In the North Atlantic it cools. Evaporation and ice formation in the North also makes the water more salty, making it more dense. The cooler, saltier water, sinks, displacing the bottom water, which flows south beyond the equator to Antarctica. These cold bottom waters flow around the globe and eventually mix with warmer water and move to the surface in the Pacific and Indian Oceans. The cycle is completed when warm surface waters head north again.
http://www.nasa.gov/images/content/436189main_atlantic20100325a-full.jpg
https://en.wikipedia.org/wiki/Thermohaline_circulation
Surface Ocean Currents: Gulf Stream (North Atlantic Ocean), Brazilian Current (South Atlantic Ocean), Agulhas Current (Indian Ocean), Kuroshio Current (North Pacific Ocean), East Australian Current (South Pacific Ocean).
Ocean mixing feeds the animals of the ocean.
Cold Antarctic surface water sinks, forcing the nutrient-rich deep water to rise (40 million cubic meters/second). The nutrients feed algae and other plants, which feed krill, which feed baleen whales, as well as penguins, seals, and seabirds.
Try this video on Antarctic krill - http://oceantoday.noaa.gov/animalsoftheice_krill/ (The krill themselves cause vertical ocean currents as they swim on mass to feed on algae at the surface. Nutrients are drawn upwards in their current.)
Ocean currents are used by animals for migration.
Loggerhead turtles migrate from Florida to the open ocean (where the young are safer), then return as adults. Atlantic Leatherbacks travel from Caribbean to Nova Scotia to feed on jellyfish. Pacific Leatherbacks have the longest migration on Earth: they are born in Japan, migrate to Mexico to feed on crabs, then head back to breed, nest. The Green Sea Turtle rides the East Australian Current, though does not go out into the open ocean (Crush in Finding Nemo).
Modelling air flow in our atmosphere
Air is warmed by the sun, predominantly at the tropics. This warm air rises, and cooler air sinks (just as the warm water rises and the cool water sinks). This movement of air in our atmosphere creates winds.
In addition, ocean currents, caused by differences in temperature and salinity of the water, move heat around the globe.
To demonstrate larger scale cold, warm and salty water flow and layering in a clear-sided box
Fill the box with room temperature water.
Elevate one end of the box to make a sloped bottom.
Drip each of the water types (salty/cold/warm) in turn and watch them sink (salty/cold) or float (warm) in the water, and flow along the bottom or surface.
Primaries at Tyee only mixed warm and cold water, whereas intermediates also used the salty water.
When this activity is done in a larger box, try measuring the temperature of the warm and cold water layers.
Mix 3:1 water:soap in a bottle or tray, gently to keep bubbles to a minimum. Add a couple of drops of food colouring.
Move the water around: tip the bottle back and forth or drag a finger through/blow on water in the tray.
The pearlescent particles show the movement of the water.
Watch the swirls (turbluence) in the water, and find the sometimes unexpected patterns that result from water flow.
For discussion on ocean currents:
In the ocean, tides and winds push the water around. Obstacles such as land or underwater mountains create turbulence as the water hits them. All this movement of the water, much of it turbulent and moving in complex patterns, both on a large scale (e.g. along a coastline) and small scale (e.g. around a reef) churns and mixes the oceans' water.
See http://naturedocumentaries.org/839/perpetual-ocean-nasa/ “Perpetual Ocean from NASA” for excellent video of turbulence patterns in the world's oceans.
Water movement brings food to animals that can't move, and moves nutrients and heat around.
Some animals have a profound effect on ocean water mixing e.g. krill move en masse to the ocean surface to feed on algae, creating a moving current of water that brings nutrients from the bottom of the ocean to the surface. Phytoplankton (single-celled plants) at the ocean surface can then feed on these nutrients. When they die they sink to the bottom, cycling nutrients back to the deep ocean. http://www.antarctica.gov.au/magazine/2006-2010/issue-15-2008/science/k….
Some animals use these ocean currents to migrate: Loggerhead turtles migrate from Florida to the open ocean (where the young are safer), then return as adults. Atlantic Leatherbacks travel from Indonesia to Nova Scotia to feed on jellyfish. Pacific Leatherbacks have the longest migration on Earth: they are born in Japan, migrate to Mexico to feed on crabs, then head back to breed, nest. The Green Sea Turtle rides the East Australian Current, though does not go out into the open ocean (Crush in Finding Nemo).
For discussion of the movement of air in our atmosphere:
The turbulence patterns in the tray are the same as the turbulence patterns made by air flowing in our atmosphere (as both water and air are fluids, so behave similarly). When air flows past islands, mountain ranges or other obstacles, turbulence patterns are created. Visual of atmospheric turbulence patterns shown by clouds: http://visibleearth.nasa.gov/view.php?id=72646
Live interactive map of Earth’s winds across the surface: https://earth.nullschool.net/#current/wind/surface/level/orthographic=-…
The bottle is less messy, but you have less control over the patterns, and they are not as interesting. Tray recommended if the set up/clean up can be dealt with.
This activity from the Exploratorium: https://www.exploratorium.edu/science_explorer/goflow.html
Focus the sun's energy on one point with a magnifier.
Test different materials to see if they can ignite. Do not stare at the focused spot of light for long - it will hurt your eyes.
(Dried grass ignites but printer paper does not.)
The magnifier focuses the sun's energy to a point, which is hot enough to ignite things that are really thin and dry.
Try with sharpie and water lens: #2 in https://www.youtube.com/watch?v=HQx5Be9g16U start at 32 seconds.
Show the materials to the students.
Tell them that they will build their own devices that can make itself fly, or shoot a small object made from the materials, in a safe manner.
Introduce the idea of elastic potential force - the energy stored in a stretched elastic band or balloon can be used to fire. When the elastic returns to its original shape, it loses energy, and the energy is transformed to motion energy of the projectile.
Support original ideas, constant modification, while guiding to make the design better.
Encourage device development if necessary by breaking down the components of the device: what will produce the power (e.g. elastic band, balloon), what will be the structural strength (e.g. chopstick, possible stick, straw), and projectile (e.g. balled up paper, toothpick).
There are an infinite number of possibilities as to what they can build.
Inspiration from "Mini Weapons of Mass Destruction" by John Austin, though often the designs in this book, being limited to office supplies, need to be modified as they are not so strong.
To make a sheet of sugar crystals:
Combine the sugar and water in the heat-proof container. Heat on a stove top to dissolve the sugar, stirring to help the sugar grains dissolve. Be careful not to heat it to much so that it boils over. The sugar solution is very hot; an adult should handle it.
Pour into a shallow baking dish, or leave in the container it was heated in. A shallow layer will yield more crystals.
Place in an undisturbed spot. Crystals are seen in two days, a week is best to allow the crystals to grow larger.
The crystals form as the sugar molecules dissolved in the water come out of solution, to form a solid.
Crystals grow down from the surface or up from the bottom of the tray. Chip out a group of crystals and rinse very briefly in cold water to remove the sugary syrup. Allow to dry. Look for the shape of the sugar (sucrose) crystals. They are monoclinic prisms.
To make sugar crystals to eat:
Students will love to eat the crystals that they make. They are pure sugar, so very sweet - only a small amount for a child is needed.
After pouring the hot sugar solution into a baking dish, lay over the mesh. Students write their name on a popsicle stick, then are assisted in lowering the popsicle sticks through the mesh into the sugar solution. Use a clothes peg to support the stick on the mesh.
Crystals will grow on the popsicle stick where it is immersed. The sticks will need to be chipped out of the layer of crystals that form on the top of the sugar solution. Once the syrup is licked/washed in cold water off the crystals, their shapes can be seen quite well.
There are other methods for growing larger sugar crystals on a stick, but they are tricky to pull off in a classroom setting.
This lesson shows how crystals form.
Choose from growing borax crystals on a pipe cleaner, making an Epsom salt painting, growing sugar crystals to eat.
Use crystal stations to explore why crystal shapes are so regular:
Crystal shapes from building blocks (can be one or more stations)
Crystal shapes with magnifiers/microscope
Mirror symmetry patterns
Granite crystal study
Discuss how the regular arrangement of atoms in a crystal define its shape. Show diamond molecular model. See repeating arrangement of atoms. The atoms line up to form flat faces. The arrangement of atoms determines what the outside shape of the crystal is.
Real snowflake crystals growing: https://www.youtube.com/watch?v=bDPczGUovzE.
Tell students that as a crystal grows, the atoms add on in a regular way. Depending on the pattern that the organize in, different shaped crystals are made.
This activity uses building toys to show how a regular arrangement of smaller units can make some common crystal shapes.
When you build, make sure that you add the units in the same repeating pattern (show example).
See which crystal shapes you come up with.
What are black holes?
They are part of the life cycle of stars.
Some stars, like our sun, will fizzle out when the hydrogen, then helium, fuel is all used up. Others become giant supernovas as the core collapses, and then form either a neutron star or a black hole.
Black holes have so much gravity that even light cannot escape them.
All matter has gravity. The more matter a body has, the more gravity it creates. You have more gravity than your pencil. The school building has more gravity than you. The earth has more gravity still, the sun more, and black holes the most. Black holes have so much gravity that even light cannot escape.
Black holes have so much gravity, not because they are large, but they have a LOT of matter packed together.
Black holes can, in theory, come in any size. The matter just has to be densely enough packed. Earth would be a black hole if it had a diameter of 2cm.
Our sun is one of 100 billion stars in our Milky Way galaxy. The Milky Way also has 100 million black holes, including a super massive black hole at the centre, called Sagittarius A*.
It is thought that black holes exist at the centre of every galaxy.
So if we can’t see black holes, how do we know they exist?
By how they affect the stars and dust clouds around them.
Students move through four stations to explore different phenomena around black holes, that allows us to study them.
They fill out the accompanying worksheet (attached below).
1. Orbits of stars around a black hole with the gravity well model. Set up the activity with the event horizon in the centre.
Astronomers look for stars that appear to be orbiting around “nothing.” Here is a drawing of the orbits of stars around Sagittarius A*: https://inspirehep.net/record/800608/files/f16.png
Model stars orbiting a black hole, and experiment with orbit shapes and speeds.
2. Swirling gas around a black hole modelled with the tornado in a bottle activity.
One of the only features of a black hole you can see are the swirling clouds of stellar dust and gas around them, called accretion discs. See this image: https://www.nasa.gov/sites/default/files/cygx1_ill_0.jpg
Long streamers of gas are pulled into the black hole, travelling faster as it gets closer to the black hole. As the matter accelerates into the black hole and heats up, it emits x-rays that radiate into space. We can detect these X-rays.
This activity models the rotating accretion disc with gas being pulled into the black hole.
3. Orbit speed around the black hole activity.
When astronomers find a star in orbit with an invisible companion, they can look at the size and speed of the orbit to figure out the size of the black hole. Students model two masses orbiting each other to observe relative orbit sizes and speeds.
4. Gravitational lensing model
A black hole’s gravity bends light, so that galaxies behind it form distorted images. They can be used to map where the black hole is. See this image of distorted galaxies: https://en.wikipedia.org/wiki/Gravitational_lens#/media/File:A_Horsesho…
This activity models the appearance of light distorted by a black hole.
Lesson 7/7 at Strathcona.